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ABSTRACT

Because sea ice thickness is known to influence future patterns of sea ice concentration, it is likely that an

improved initialization of sea ice thickness in a coupled ocean–atmosphere model would improve Arctic sea

ice cover forecasts. Here, two sea ice thickness datasets as possible candidates for forecast initialization were

investigated: the Climate Forecast System Reanalysis (CFSR) and the Pan-Arctic Ice Ocean Modeling and

Assimilation System (PIOMAS). Using Ice, Cloud, and Land Elevation Satellite (ICESat) data, it was shown

that the PIOMAS dataset had a more realistic representation of sea ice thickness than CFSR. Subsequently,

both March CFSR and PIOMAS sea ice thicknesses were used to initialize hindcasts using the Climate

Forecast System, version 2 (CFSv2), model. A second set of model runs was also done in which the original

model physics were modified tomore physically reasonable settings—namely, increasing the number of marine

stratus clouds in the Arctic region and enabling realistic representation of the ice–ocean heat flux. Hindcasts

were evaluated using sea ice concentration observations from the National Aeronautics and Space Adminis-

tration (NASA) Team and Bootstrap algorithms. Results show that using PIOMAS initial sea ice thickness in

addition to the physics modifications yielded significant improvement in the prediction of September Arctic

sea ice extent along with increased interannual predictive skill. Significant local improvements in sea ice

concentration were also seen in distinct regions for the change to PIOMAS initial thickness or the physics

adjustments, with the most improvement occurring when these changes were applied concurrently.

1. Introduction

According to the Fifth Assessment Report from the

Intergovernmental Panel on Climate Change (IPCC),

annual Arctic sea ice extent (SIE) is very likely (90%–

100% confident) to have decreased at a rate of 0.45 to

0.51 millionkm2decade21 during the 1979–2012 period

(Vaughan et al. 2013), leading to projections of a sum-

mer ice free Arctic by the 2030s (Wang and Overland

2012). Sea ice loss can be attributed to both anthropogenic

influences and natural variability (Kay et al. 2011; Swart

et al. 2015). On a seasonal time scale, accurate Arctic sea

ice prediction is important for oil and shipping interests,

wildlife protection, and ecosystems management.

Studies support that the Arctic sea ice cover is po-

tentially predictable up to several years in advance

(Blanchard-Wrigglesworth et al. 2011; Day et al. 2014a;

Tietsche et al. 2014). However, assessments only show

actual predictive skill for sea ice out to only a few months

(Chevallier et al. 2013; Merryfield et al. 2013; Sigmond

et al. 2013; Wang et al. 2013). The difference between

potential predictability and actual skill raises interesting

questions for possible causes—for example, errors in the

initialization of sea ice thickness, which has been labeled

as a good potential predictor of the sea ice cover (Lindsay

et al. 2008).Wang et al. (2013) showed that changes in sea
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ice thickness during the spring months had a large impact

on forecasts of September SIE using the Climate Forecast

System, version 2 (CFSv2), with thickness increases re-

sulting in higher SIE forecasts and vice versa, which

agreed with observations. Low March 2007 sea ice thick-

ness anomalies were cited by Kauker et al. (2009) as a

factor leading to the record low sea ice cover in the fol-

lowing September. Day et al. (2014a,b) showed that sea

ice thickness information is crucial for prediction of sea ice

cover up to eight months in advance, and Chevallier and

Salas-Melia (2012) demonstrated the area covered by

thick ice above a certain threshold inMarch can be used to

predict September sea ice area (SIA). Msadek et al.

(2014) also showed skillful predictions of September SIE

can be obtained from initializations as early as March

using improved atmospheric initial conditions and high-

lighted the potential benefits of initializing improved sea

ice thickness data.

Therefore, given that sea ice thickness is a potentially

important predictor to forecast September sea ice cover,

it is important to investigate the uncertainties in the

initialization of sea ice thickness in the current forecast

systems and to what extent improvements in the initial

condition sea ice thickness dataset used in models could

yield an improvement in September sea ice forecasts,

thereby narrowing the gap between prediction skill and

potential predictability. In this study, we analyze the sea

ice thickness from two data assimilation systems and

demonstrate the dependence of sea ice forecast skill on

the accuracy of initial sea ice thickness based on hindcast

experiments.

2. Methodology

a. Sea ice thickness datasets

Pan-Arctic Ice Ocean Modeling and Assimilation

System (PIOMAS) sea ice thickness data (Zhang and

Rothrock 2003) from the Polar Science Center at the

University of Washington were used, in addition to

Climate Forecast System Reanalysis (CFSR; Saha et al.

2010) sea ice thickness data from the National Centers

for Environmental Prediction (NCEP). Sea ice compo-

nents in both PIOMAS and CFSR assimilate satellite

measurements of sea ice concentration. Sea ice thickness

is derived from internal dynamics and thermodynamics

without assimilating observed thickness information.

CFSR uses the Geophysical Fluid Dynamics Laboratory

(GFDL) Modular Ocean Model (MOM4) coupled with

the GFDL Sea Ice Simulator. PIOMAS is run with the

Parallel Ocean Program coupled with a thickness and

enthalpy distribution sea ice model. CFSR ocean and ice

models are coupled with an atmospheric model and data

assimilation systemwhile PIOMAS ocean and ice models

are forced with the NCEP–National Center for Atmo-

spheric Research (NCAR) reanalysis. CFSR provides

initial conditions for the NCEP operational seasonal cli-

mate prediction system, CFSv2 (Wang et al. 2013; Saha

et al. 2014), and PIOMAS has been used to initialize sea

ice forecasts for other models (Zhang et al. 2008;

Blanchard-Wrigglesworth et al. 2015, manuscript sub-

mitted to Geophys. Res. Lett.). An assessment of the

difference between CFSR and PIOMAS and its impact

on sea ice prediction will help understand the source of

errors in the prediction.

Figure 1 compares sea ice thickness and integrated sea

ice volume from CFSR, PIOMAS, and the Ice, Cloud,

and Land Elevation Satellite (ICESat; Schutz et al.

2005). ICESat data used are described in Kwok et al.

(2009) and available for download at http://rkwok.jpl.

nasa.gov/icesat. Better agreement is seen between the

spatial map of ICESat sea ice thickness (Fig. 1c) and

the spatial map of PIOMAS thickness (Fig. 1b) than the

spatial map of CFSR thickness (Fig. 1a). Schweiger et al.

(2011) suggested that ICESat thicknesses may be too

high off the northern coast of Greenland (Fig. 1c) as

PIOMAS data were found to be more comparable with

in situ observations in this region. Laxon et al. (2013)

also established that the representation of sea ice vol-

ume from PIOMAS is realistic based on comparisons

with ICESat and CryoSat-2. This is also addressed in

Fig. 1d, which shows the mean February and March sea

ice volume from PIOMAS and CFSR for the years

1982–2013 with the ICESat data plotted at the appro-

priate times. It is apparent that the ICESat mean state is

more in line with PIOMAS than with CFSR. With this

information, the use of PIOMAS sea ice thickness data

as initial conditions with goals of improving CFSv2 fore-

casts of sea ice cover is justified.

b. Model setup

To assess the influence of sea ice thickness on sub-

sequent forecasts, a set of CFSv2 hindcasts were initial-

ized inMarch 2009–13 and run for nine full target months

(April–December) with both CFSR and PIOMAS initial

sea ice thickness thus covering the sea ice minimum each

year. For each year, five ensembles were run (initialized

0000UTC 8–12March). The length of nine target months

follows the setting for NCEP operational seasonal pre-

dictionwithCFSv2. The choice ofMarch as initialmonths

allowed an analysis for both melting in summer and re-

freezing after fall. First, we focused on the assessment of

the evolution of the mean seasonal cycle across the five

hindcast years (2009–13), in particular the representa-

tion of the September sea ice minimum. While a period

of five years allowed for an evaluation in the prediction
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of seasonal cycle as well as an assessment of tech-

niques for initializing forecasts with PIOMAS sea ice

thickness and for generating an ensemble of forecasts,

it was too short for a comprehensive assessment of the

model performance in predicting interannual variabil-

ity. Therefore, to analyze year-to-year prediction, select

hindcasts were extended to cover 10 years (2005–14,

section 3c).

CFSv2 is a coupled ocean–atmosphere model, with

the components being the NCEP Global Forecast Sys-

tem (GFS) and GFDL MOM4 for the atmosphere and

ocean, respectively (Saha et al. 2014). Control runs were

set upwith CFSR initial sea ice thickness (CFSv2CFSR).

PIOMAS data were interpolated to CFSR’s Arctic

grid spacing (as in CFSv2). In addition, PIOMAS ice

thickness categories were converted from their native

FIG. 1. Mean sea ice thickness throughout the five ICESat spring acquisition periods. Daily (a) CFSR and (b) PIOMAS data used to

exactly match (c) ICESat periods. (d) Mean February–March sea ice volume from CFSR and PIOMAS for 1982–2013 with the ICESat

volume for the five acquisition periods plotted where applicable. Only ICESat common grid points were included in the sea ice volume

calculation for all datasets.
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12-category configuration (Zhang and Rothrock 2001)

to the 5-category configuration used in CFSR (Saha

et al. 2010). Following these interpolations, CFSv2 runs

were initialized with the PIOMAS sea ice thickness

(CFSv2PIOM) but with all other fields from CFSR.

A second set of hindcasts was runwith amodification to

the model physics (CFSv2CFSRp and CFSv2PIOMp).

One major issue in the previous CFS, version 1 (CFSv1),

was the lack of marine stratus clouds, which caused large

sea surface temperature (SST) warm biases off the trop-

ical west coasts of continents and mid- to high latitudes of

the summer hemisphere (Moorthi et al. 2010). For the

CFSR and CFSv2, a parameterization scheme was de-

veloped to improve the simulation of maritime clouds.

Themodified scheme includes two changes to the original

atmospheric model physics: 1) limit the shallow convec-

tion top to be below the low-level inversion when the

condition for cloud-top entrainment instability is not

satisfied and 2) set the background vertical diffusion to

zero above low-level inversions. The combination of

these two modifications leads to an improved prediction

of marine stratus (Moorthi et al. 2010). This scheme has

been used in the CFSR (Saha et al. 2010).

During the testing and development phase of CFSv2,

the forecast system counterpart of CFSR, this schemewas

disabled because its use together with the easterly wind

bias in the tropical Pacific in the atmospheric component

caused a large SST cold bias and greatly weakened the

predicted El Niño–Southern Oscillation (ENSO) vari-

ability (Saha et al. 2014). This step, resulting in essentially

turning off the generation of stratus clouds, was justified as

the performance in ENSO prediction was the dominant

concern, while less attention was paid to the skill of sea ice

prediction. Disabling of the stratus cloud scheme in the

CFSv2was for a pragmatic reason: tomaintain reasonable

tropical SST variability rather than being physically based.

However, this also resulted in a large SSTwarmbias in the

high latitudes during warm seasons due to excessive sur-

face downward solar radiation, causing too-rapid sea ice

melting. To compensate for this, an artificial upper

limit for the bottom heat flux from ocean water into sea

ice was imposed—another unphysical treatment in the

CFSv2 model. In this study, physics modifications refer

to 1) ‘‘reenabling’’ the scheme ofMoorthi et al. (2010) to

improve marine stratus clouds and 2) ‘‘removing’’ the

constraint for water–ice heat flux to revert the model

configuration to what it should physically be. Comparison

between these two hindcast sets allows an analysis of the

dependence of the impact of sea ice thickness initializa-

tion on these model physics settings. A list of model runs

integrated in this study is provided in Table 1.

c. Evaluation

Model hindcasts were evaluated against observations

from the National Aeronautics and Space Administra-

tion (NASA), specifically the NASA Team (Cavalieri

et al. 2014) and NASA Bootstrap (Comiso 2014) sea ice

concentrations, which were interpolated to match the

gridcell spacing of the CFSv2 output. Both datasets are

dependent on the same set of satellite observations, but

differences arise in the interpretation of meltwater pro-

cesses. As explained in Notz (2014), summer sea ice has

higher values of sea ice concentration in the NASA

Bootstrap dataset than in the NASA Team dataset. Al-

though both algorithms treat sea ice covered by surface

meltwater as open water, the Bootstrap algorithm com-

pensates for this bias more than the NASA Team algo-

rithm. The NASA observations have a region close to the

pole that cannot be observed owing to the orbit inclination

of the satellites. This region, known as the ‘‘polar hole’’

with an area of approximately 0.283 106km2, is removed

from all datasets for a concise evaluation.

The assessment of the model output was done using

hemispheric scale total sea ice cover in addition to

gridcell sea ice concentration using changes in absolute

error of the different model configurations relative to

the base scenario (absolute error of CFSv2CFSR with

respect to NASA observations). Significant improve-

ments in error at 99%confidencewere determined using a

one-tailed t test. Total sea ice cover is commonly repre-

sented by SIE and SIA. Following the IPCC report

(Vaughan et al. 2013), SIE is defined as the region en-

compassed by the edge of sea ice, represented by a con-

centration of at least 15%. Because of this, regions with

small leads in the sea ice with a concentration greater than

the 15% threshold are still counted as part of the SIE.

TABLE 1. List of CFSv2 hindcast runs.

CFSv2 run Physics change Initial thickness change Initialization dates

CFSv2CFSR 0000 UTC 8–12 Mar 2005–14*

CFSv2CFSRp 3 0000 UTC 8–12 Mar 2009–13

CFSv2PIOM 3 0000 UTC 8–12 Mar 2009–13

CFSv2PIOMp 3 3 0000 UTC 8–12 Mar 2005–14*

* 2005–14 hindcasts used for section 3c for interannual variability; for comparisons with CFSv2CFSRp and CFSv2PIOM, only 2009–13

data are used.
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SIA is different, as these leads are not included. For this

reason SIE is always greater than SIA. In this analysis,

Arctic SIE was computed by taking the cumulative sum

across the Northern Hemisphere of the area of each grid

cell with a sea ice concentration at or above 15%. SIA

was calculated by multiplying the sea ice concentration

in each grid cell by the area of the respective grid cell

and taking aNorthernHemisphere sum of the results for

grid cells with a sea ice concentration at or greater than

15%. For each hindcast year, SIE and SIA were calcu-

lated individually for each ensemble member and then

averaged to yield a mean SIE and SIA value for that

year. Finally, rather than taking the hemispheric total,

sea ice concentration values at individual grid cells were

also examined to better assess regional patterns.

3. Results

a. Integrated SIE and SIA

We first evaluated the seasonal cycle of SIE and SIA

from the experiments. Figure 2 presents the monthly

mean forecast SIE and SIA (excluding the polar hole

region). Figure 3 shows the month to month change of

each variable to illustrate how well the seasonal cycle is

captured. Absolute differences in SIE and SIA relative

to NASA observations are shown in Fig. 4.

Focusing on total SIE, it is evident that either modi-

fying the model physics or changing the initial thick-

ness to PIOMAS resulted in improved forecasts of the

sea ice minimum relative to CFSv2CFSR. Prediction of

mean September 2009–13 sea ice minimum in the base

CFSv2CFSR run yielded a SIE value of 7.96 3 106 km2.

Actual observations from NASA Team and NASA Boot-

strap were 5.04 3 106 and 4.97 3 106km2, respectively.

When only modifying the physics and still using CFSR

thickness initialization, the predicted mean September SIE

dropped to 6.35 3 106 km2. Switching to PIOMAS ini-

tialized thickness the predicted SIE was 6.31 3 106 km2

without the physics change and 4.72 3 106 km2 with the

physics change. Clearly, based on Fig. 4, using PIOMAS

in conjunction with the physics change produced the best

prediction of September mean SIE with significant im-

provements at 99% confidence relative to CFSv2CFSR

FIG. 2. Monthly mean (a)–(c) SIE and (d)–(f) SIA derived from the 25 ensemble members used (5 ensembles each

year 2009–13). All panels have CFSv2CFSR results plotted along with (a),(d) CFSv2CFSRp; (b),(e) CFSv2PIOM;

and (c),(f) CFSv2PIOMp. Error bars denote the minimum and maximum of the 25 ensemble members. The gray

shading in all panels represents the spread between the NASA Team and Bootstrap observations over the 5-yr

period. Units are 106 km2.
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for both comparisons with NASA Team and NASA

Bootstrap. For the NASA Team comparison the im-

provement was significant throughout the July–October

period (Fig. 4a) and September for NASA Bootstrap

(Fig. 4b). The increase in absolute error in August SIE in

the CFSv2PIOMp runs can be attributed to the low pre-

diction of SIE relative to the observations (Fig. 2c).

SIA was more difficult to evaluate given the differ-

ences that exist within the observational datasets, with

NASA Bootstrap consistently producing a higher SIA

than NASA Team because it has larger concentration

values (Notz 2014). There are also seasonal differences

in the minimum in SIA with the runs with physics

changes producing the minimum in August and the runs

with no physics changes and the observations showing

the minimum in September (Figs. 2d,f). For this reason,

we focus on the average August–September value.

August–September average SIAoutput fromCFSv2PIOM

and CFSv2PIOMp were 4.40 3 106 and 3.78 3 106km2,

respectively. This compares better to the NASA observa-

tions (3.48 3 106km2 for Team and 4.34 3 106km2 for

Bootstrap) than the runs with CFSR initialized thickness

(5.68 3 106 km2 for CFSv2CFSR and 5.11 3 106 km2 for

CFSv2CFSRp). Absolute error changes with respect to

NASATeam are significantly decreased for CFSv2PIOMp

for July–September but only in September forCFSv2PIOM

(Fig. 4c). Relative to NASA Bootstrap, it is apparent

from Fig. 4d that CFSv2PIOMp shows a continual im-

provement while the other configurations have an in-

crease in error between July and November. The

improvement in CFSv2PIOMp is particularly significant

in November.

Asmentioned before, part of the issue also arises from

how the different model configurations handle the sea-

sonal cycle of sea ice. As shown in Figs. 3c and 3f, the

acceleration of ice formation (represented by the slope

of the plotted lines) in the August–October period

better agrees with the NASA observations in runs which

used both changes in physics and PIOMAS initial

thickness than the other runs. Upon closer examination,

it is evident that the PIOMAS initial sea ice thickness

conditions allow for a better representation of the SIE

and SIA tendency inAugust–September (melt; Figs. 3b,e)

and the physics changes show higher skill in September–

October (freeze; Figs. 3a,d). Without the PIOMAS initial

sea ice thickness the melting rate is too slow, and without

the physics changes, the refreeze is too slow compared to

observations. The optimal configuration is when both

physics and initial thicknesses are changed (Figs. 3c,f).

The only caveat is that the actual change in SIA is positive

FIG. 3. As in Fig. 2, but for the mean month-to-month change in SIE and SIA.
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in September for the runs with physics changes and neg-

ative in the observations (Figs. 3d,f), which leads to the

discrepancy in the modeled minimum as explained in the

preceding paragraph. The next section will focus on sea

ice concentration on the grid cell scale to address the SIA

prediction uncertainties.

b. Regional sea ice concentration

For local characteristics among the experiments, we

first looked at prediction around the Bering Strait,

where the sea ice seasonal cycle is largely controlled by

thermodynamic processes (Bitz et al. 2005) and thus

strongly affected by initial sea ice thickness and surface

heat fluxes. Figure 5 shows zonal mean sea ice concen-

tration from April to December averaged for 2009–13

between 1708 and 2008E. The NASA Team and NASA

Bootstrap data were essentially the same with a strong

seasonal cycle (Figs. 5e,f). Taking the location of 15%–

30% concentration to measure the sea ice evolution, the

observed sea ice retreated northward from near 658N in

June to 768N inAugust and September and then expanded

southward reaching 628N in December. CFSv2CFSR

produced weak seasonal cycle with 15%–30% concen-

tration reaching slightly to the north of 708N in Septem-

ber and returning to around 668N in December (Fig. 5a).

Improvements were seen with the modifications to the

model physics or with the use of PIOMAS sea ice initial

conditions. In September, the sea ice retreated to 738N
in CFSv2CFSRp (Fig. 5b) and 758N in CFSv2PIOM

(Fig. 5c) and CFSv2PIOMp (Fig. 5d), suggesting the use

of PIOMAS initial thickness conditions created more

improvement than just the change to model physics in

this region since the NASA observations showed retreat

up to 768N. It is noted that the delayed autumn sea ice

formation in CFSv2CFSR is not improved in the other

experiments, suggesting that this bias in CFSv2 is not

related to the initialization of sea ice thickness or the

physics tested in this study.

Next, we compared spatial patterns of September sea

ice concentration throughout the entire Arctic. Figure 6

shows the mean September sea ice concentration across

the region for the four model configurations and the

NASA observations, with the runs with physics changes

and the NASA Bootstrap observations having the

FIG. 4.Mean absolute error betweenCFSv2modeled and observed (a),(b) sea ice extent and (c),(d) area relative to

NASA (a),(c) Team and (b),(d) Bootstrap observations (106 km2). Filled dots denote a significant decrease in the

absolute error relative to the absolute error between CFSv2CFSR and NASA observations at 99% confidence based

on a single-tailed t test.
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highest values supporting the SIA analysis in the pre-

vious section. As apparent in Fig. 7, there are three

distinct regions that showed significant improvements in

absolute error relative to NASA observations—namely,

the North Atlantic, the central Arctic, and the northern

coasts of Alaska and Russia. The regions with changes

are a function of the model configuration used and the

observational dataset compared to. For example,

FIG. 5. Zonal mean sea ice concentration from CFSv2 hindcasts and NASA observations over the Bering Sea

region (1708–2008E): (a) CFSv2CFSR, (b) CFSv2CFSRp, (c) CFSv2PIOM, (d) CFSv2PIOMp, (e) NASATeam, and

(f) NASA Bootstrap.
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applying physics changes significantly improved central

Arctic sea ice forecasts relative to NASA Bootstrap

(Figs. 7g,h). Adjusting the physics improved the hind-

casts in the North Atlantic relative to both observations

(Figs. 7c,d,g,h). Changing the thickness initiation im-

proved hindcasts off the northern Alaska and Russian

coasts for both CFSv2PIOM and CFSv2PIOMp

(Figs. 7b,f,d,h), which agrees with the results presented

in Fig. 5. When both the physics were adjusted and

PIOMAS thickness was used to initialize the model, the

significant improvements were seen in both the North

Atlantic and off the Alaskan–Russian coast, yielding

this as the optimal configuration. Central Arctic im-

provements are only dependent on the observed dataset

used to evaluate but not the initial thickness or physics

settings. The total area of the SIE region with significant

improvement in absolute error relative to CFSv2CFSR

is presented in Fig. 7i and Fig. 7j using NASA Team and

NASA Bootstrap observations, respectively, as a func-

tion of month, and it is apparent that using PIOMAS sea

ice thickness with adjusted physics yields the largest

region of improvements in hindcasts throughout most of

the period.

c. Interannual variability

Finally, it is pertinent to look into interannual vari-

ability. For this analysis, the hindcasts for CFSv2CFSR

and CFSv2PIOMp were extended to cover 2005–14.

Only the hindcasts for these two configurations were

extended for this part of the analysis as they represent

the lowest and highest skill, respectively, in terms of

the mean state prediction as shown in the previous

sections. Here we used September SIE and SIA from

individual ensemble members and looked into the

FIG. 6. Mean September sea ice concentration for (a) CFSv2CFSR, (b) CFSv2PIOM, (c) NASA Team observations, (d) CFSv2CFSRp,

(e) CFSv2PIOMp, and (f) NASA Bootstrap observations. Only regions with ice concentration values greater than 0.15 are plotted.
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FIG. 7. (a)–(h) Mean September absolute error between modeled mean sea ice concentration and NASA obser-

vations (label on left minus label above). Hatching denotes regionwhere the decrease in the absolute error relative to

CFSv2CFSR’s absolute error is significant at the 99% confidence interval based on a single-tailed t test. Only the

region where the mean sea ice concentration in CFSv2CFSR over the hindcast period is greater than or equal to 0.15

is considered (Fig. 5a). The area of the region (106 km2) with significant reduction in absolute error relative to

CFSv2CFSR for each month is plotted for (i) NASA Team as the observed truth and for (j) NASA Bootstrap as the

observed truth.

NOVEMBER 2015 COLLOW ET AL . 4627



mean and spread for individual years rather than a

seasonal average. Figure 8 shows a time series for the

two CFSv2 model configurations as well as the NASA

observations. It is apparent that for both SIE and SIA

that CFSv2PIOMp agrees better with the NASA ob-

servations than CFSv2CFSR for each individual year.

Tables 2 and 3 provide statistical parameters for SIE

and SIA, respectively.

The overall linear trend in SIE and SIA was more ac-

curately captured in CFSv2PIOMp than in CFSv2CFSR

relative to the NASA observations as illustrated by the

dotted lines in Fig. 8 and the first columns of Tables 2 and

3. The trend is near neutral in SIE and SIA from

CFSv2CFSR while CFSvPIOMp and both sets of NASA

observations show trends in SIE and SIA between

20.06 3 106 and 20.09 3 106km2yr21. Higher correla-

tion coefficients and lower root-mean-square errors rel-

ative to the NASA observations were found when the

CFSv2PIOMp configuration was used than from using

CFSv2CFSR. Even when linear trends were removed

from all datasets, this holds true, indicating some degree

of improved prediction of sea ice interannual variability

was achieved using CFSv2PIOMp. Despite the marked

statistical improvement in the CFSv2PIOMp hindcasts,

the ensemble spread SIE hindcasts only encompassed the

NASA observations in 4 out of 10 years. This was not as

clear for SIA because of the larger variability between

NASA Team and Bootstrap observations.

4. Discussion and conclusions

Hindcasts were conducted with the CFSv2 model

initialized in March using different sea ice thickness

datasets and changed model physics parameters to as-

sess improvements in sea ice prediction. While previous

studies (Wang et al. 2013; Msadek et al. 2014) have

pointed out the difficulty in using a more realistic sea ice

thickness dataset due to the sparseness of observations,

PIOMAS output, which covers the entire Arctic region,

was found to be observationally consistent and therefore

determined as a feasible dataset to use in this study.

Despite the short hindcast period, significant results at

99% confidence were still able to be found. The results

show that hindcasts of SIEwere improvedwhenPIOMAS

sea ice thickness was used as the initial conditions for

CFSv2. In addition, the hindcasts were further improved

when modifications to the physics were made to restore

the model to physically reasonable settings, and the im-

provements were significant at 99% confidence for the

month of September. SIA proved harder to evaluate

owing to differences in the observation datasets and

FIG. 8. Time series of ensemble mean September (a) SIE and

(b) SIA from CFSv2 hindcasts and NASA observations for the

2005–14 period. Error bars denote the ensemble minimum and

maximum for each year. Dotted lines represent the best linear fit of

the ensemble mean.

TABLE 2. September SIE statistical parameters determined using ensemble mean time series of individual years 2005–14 (m, slope of

best fit linear trend line; r, correlation coefficient; RMSE, root-mean-square error; r*, correlation after removal of all linear trends;

RMSE*, root-mean-square error after removal of all linear trends). For each column, the value to the left of the j represents the result of
doing the comparison against NASA Team observations and the value to the right for NASA Bootstrap. The slope of the best fit linear

trend line for NASA Team and Bootstrap observations was 20.06 and 20.08, respectively.

CFSv2 run m (106 km2 yr21) r RMSE (106 km2) r* RMSE* (106 km2)

CFSv2CFSR 0.01 0.36 j 0.30 2.79 j 2.89 0.40 j 0.36 0.59 j 0.68
CFSv2PIOMp 20.09 0.60 j 0.58 0.70 j 0.73 0.57 j 0.52 0.53 j 0.62

4628 MONTHLY WEATHER REV IEW VOLUME 143



NASA Team and NASA Bootstrap satellite sea ice

concentration retrievals. However, the overall tendency

was best modeled in the runs that both adjusted the

physics and used PIOMAS initial thickness conditions. It

is also worth noting that the unrealistic positive trend in

early spring sea ice volume in CFSR (Fig. 1d) corre-

sponded to a neutral trend in predicted September SIE

and SIA (Fig. 8) while the downward sea ice volume

trend seen in PIOMAS during February and March

translated into a more observationally consistent down-

ward trend in predicted SIE and SIA.

Seasonal evolution of sea ice concentration in local

regions showed similar behavior among the hindcasts. In

particular, the original CFSv2 initialized from CFSR

produced a weak seasonal cycle of sea ice concentration

around the Bering Sea and Chukchi Sea. The change in

physics and the use of PIOMAS sea ice thickness as the

initial conditions resulted in an improved sea ice sea-

sonal cycle. A closer look into September sea ice con-

centration across the Arctic identified relative impacts

from changes in initialization compared to those from

changes in model physics. Specifically, physics changes

significantly improved sea ice prediction within the

North Atlantic, initial thickness changes improved the

forecast off the northern Alaska and Russian coasts, and

both physics and initial thickness changes resulted in

improvements in both aforementioned regions high-

lighting this as the optimal configuration. The North

Atlantic and coastal Alaska/Russia regions are along the

edge of the sea ice, which shows that the model en-

hancements appear proficient at better predicting the

boundary between sea ice and open ocean, but at this

time because of the uncertainties discussed with SIA, it

cannot be said with confidence that there are significant

improvements in forecasting the exact amount of sea ice

that is present within the ice covered region.

The results presented here call for accurate initiali-

zation of sea ice thickness as well as realistic physical

treatments in the coupled system for more accurate

seasonal prediction of the seasonal cycle of sea ice as

they can benefit both the prediction of the mean state

and interannual variability. Improved knowledge of the

location of sea ice edge will greatly benefit many oper-

ations based in the Arctic. Future work will need to as-

sess the dependence of the improvement on initial

months. For example, it is possible that an accurate

initial condition of sea ice thickness may benefit hind-

casts and forecasts of September sea ice cover initialized

from June more than that from March (Chevallier and

Salas-Melia 2012; Day et al. 2014a). Work is also plan-

ned to address the predictability of the first calendar

year/day of sea ice melt and freeze using this new ini-

tialization, particularly over the Alaska region where

the initial sea ice thickness change appeared to have the

largest positive results.
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